Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.056
Filtrar
1.
PLoS One ; 19(2): e0293548, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359047

RESUMO

RNA sequencing and genetic data support spleen tyrosine kinase (SYK) and high affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) as putative targets to be modulated for Alzheimer's disease (AD) therapy. FCER1G is a component of Fc receptor complexes that contain an immunoreceptor tyrosine-based activation motif (ITAM). SYK interacts with the Fc receptor by binding to doubly phosphorylated ITAM (p-ITAM) via its two tandem SH2 domains (SYK-tSH2). Interaction of the FCER1G p-ITAM with SYK-tSH2 enables SYK activation via phosphorylation. Since SYK activation is reported to exacerbate AD pathology, we hypothesized that disruption of this interaction would be beneficial for AD patients. Herein, we developed biochemical and biophysical assays to enable the discovery of small molecules that perturb the interaction between the FCER1G p-ITAM and SYK-tSH2. We identified two distinct chemotypes using a high-throughput screen (HTS) and orthogonally assessed their binding. Both chemotypes covalently modify SYK-tSH2 and inhibit its interaction with FCER1G p-ITAM, however, these compounds lack selectivity and this limits their utility as chemical tools.


Assuntos
Proteínas Tirosina Quinases , Domínios de Homologia de src , Humanos , Proteínas Tirosina Quinases/metabolismo , Motivo de Ativação do Imunorreceptor Baseado em Tirosina , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Quinase Syk/metabolismo , Fosforilação , Receptores Fc/metabolismo , Precursores Enzimáticos/metabolismo
2.
Insect Biochem Mol Biol ; 164: 104048, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056530

RESUMO

Phenoloxidase (PO) catalyzed melanization and other insect immune responses are mediated by serine proteases (SPs) and their noncatalytic homologs (SPHs). Many of these SP-like proteins have a regulatory clip domain and are called CLIPs. In most insects studied so far, PO precursors are activated by a PAP (i.e., PPO activating protease) and its cofactor of clip-domain SPHs. Although melanotic encapsulation is a well-known refractory mechanism of mosquitoes against malaria parasites, it is unclear if a cofactor is required for PPO activation. In Anopheles gambiae, CLIPA4 is 1:1 orthologous to Manduca sexta SPH2; CLIPs A5-7, A12-14, A26, A31, A32, E6, and E7 are 11:4 orthologous to M. sexta SPH1a, 1b, 4, and 101, SPH2 partners in the cofactors. Here we produced proCLIPs A4, A6, A7Δ, A12, and activated them with CLIPB9 or M. sexta PAP3. A. gambiae PPO2 and PPO7 were expressed in Escherichia coli for use as PAP substrates. CLIPB9 was mutated to CLIPB9Xa by including a Factor Xa cleavage site. CLIPA7Δ was a deletion mutant with a low complexity region removed. After PAP3 or CLIPB9Xa processing, CLIPA4 formed a high Mr complex with CLIPA6, A7Δ or A12, which assisted PPO2 and PPO7 activation. High levels of specific PO activity (55-85 U/µg for PO2 and 1131-1630 U/µg for PO7) were detected in vitro, indicating that cofactor-assisted PPO activation also occurs in this species. The cleavage sites and mechanisms for complex formation and cofactor function are like those reported in M. sexta and Drosophila melanogaster. In conclusion, these data suggest that the three (and perhaps more) SPHI-II pairs may form cofactors for CLIPB9-mediated activation of PPOs for melanotic encapsulation in A. gambiae.


Assuntos
Anopheles , Manduca , Animais , Serina Proteases/metabolismo , Anopheles/metabolismo , Drosophila melanogaster/metabolismo , Serina Endopeptidases , Catecol Oxidase/genética , Catecol Oxidase/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Monofenol Mono-Oxigenase , Manduca/metabolismo , Proteínas de Insetos/metabolismo , Hemolinfa
3.
Adv Mater ; 36(6): e2309385, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38009384

RESUMO

In this work, synthetic cells equipped with an artificial signaling pathway that connects an extracellular trigger event to the activation of intracellular transcription are engineered. Learning from nature, this is done via an engineering of responsive enzymes, such that activation of enzymatic activity can be triggered by an external biochemical stimulus. Reversibly deactivated creatine kinase to achieve triggered production of adenosine triphosphate, and a reversibly deactivated nucleic acid polymerase for on-demand synthesis of RNA are engineered. An extracellular, enzyme-activated production of a diffusible zymogen activator is also designed. The key achievement of this work is that the importance of cellularity is illustrated whereby the separation of biochemical partners is essential to resolve their incompatibility, to enable transcription within the confines of a synthetic cell. The herein designed biochemical pathway and the engineered synthetic cells are arguably primitive compared to their natural counterpart. Nevertheless, the results present a significant step toward the design of synthetic cells with responsive behavior, en route from abiotic to life-like cell mimics.


Assuntos
Células Artificiais , Precursores Enzimáticos , Precursores Enzimáticos/metabolismo
4.
Dev Comp Immunol ; 151: 105088, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37923098

RESUMO

Prophenoloxidase (proPO) activating enzymes, known as PPAEs, are pivotal in activating the proPO system within invertebrate immunity. A cDNA encoding a PPAE derived from the hemocytes of banana shrimp, Fenneropenaeus merguiensis have cloned and analyzed, referred to as FmPPAE1. The open reading frame of FmPPAE1 encompasses 1392 base pairs, encoding a 464-amino acid peptide featuring a presumed 19-amino acid signal peptide. The projected molecular mass and isoelectric point of this protein stand at 50.5 kDa and 7.82, respectively. Structure of FmPPAE1 consists of an N-terminal clip domain and a C-terminal serine proteinase domain, housing a catalytic triad (His272, Asp321, Ser414) and a substrate binding site (Asp408, Ser435, Gly437). Expression of the FmPPAE1 transcript is specific to hemocytes and is heightened upon encountering pathogens like Vibrio parahaemolyticus, Vibrio harveyi, and white spot syndrome virus (WSSV). Using RNA interference to silence the FmPPAE1 gene resulted in reduced hemolymph phenoloxidase (PO) activity and decreased survival rates in shrimp co-injected with pathogenic agents. These findings strongly indicate that FmPPAE1 plays a vital role in regulating the proPO system in shrimp. Furthermore, upon successful production of recombinant FmPPAE1 protein (rFmPPAE1), it became evident that this protein exhibited remarkable abilities in both agglutinating and binding to a wide range of bacterial strains. These interactions were primarily facilitated through the recognition of bacterial lipopolysaccharides (LPS) or peptidoglycans (PGN) found in the cell wall. This agglutination process subsequently triggered melanization, a critical immune response. Furthermore, rFmPPAE1 exhibited the ability to actively impede the growth of pathogenic bacteria harmful to shrimp, including V. harveyi and V. parahaemolyticus. These findings strongly suggest that FmPPAE1 not only plays a pivotal role in activating the proPO system but also possesses inherent antibacterial properties, actively contributing to the suppression of bacterial proliferation. In summary, these results underscore the substantial involvement of FmPPAE1 in activating the proPO system in F. merguiensis and emphasize its crucial role in the shrimp's immune defense against invading pathogens.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Vírus da Síndrome da Mancha Branca 1 , Animais , Hemócitos , Serina Endopeptidases/genética , Catecol Oxidase/genética , Catecol Oxidase/metabolismo , Proteínas Recombinantes/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Aminoácidos , Vírus da Síndrome da Mancha Branca 1/metabolismo
5.
Bioorg Med Chem Lett ; 97: 129541, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952596

RESUMO

Matrix metalloproteinase-9 (MMP-9) is a secreted zinc-dependent endopeptidase that degrades the extracellular matrix and basement membrane of neurons, and then contributes to synaptic plasticity by remodeling the extracellular matrix. Inhibition of MMP-9 activity has therapeutic potential for neurodegenerative diseases such as fragile X syndrome. This paper reports the molecular design, synthesis, and in vitro studies of novel indole derivatives as inhibitors of proMMP-9 activation. High-throughput screening (HTS) of our internal compound library and subsequent merging of hit compounds 1 and 2 provided compound 4 as a bona-fide lead. X-ray structure-based design and subsequent lead optimization led to the discovery of compound 33, a highly potent and selective inhibitor of proMMP-9 activation.


Assuntos
Precursores Enzimáticos , Metaloproteinase 9 da Matriz , Metaloproteinase 9 da Matriz/metabolismo , Precursores Enzimáticos/metabolismo , Matriz Extracelular/metabolismo , Indóis/farmacologia , Indóis/metabolismo , Metaloendopeptidases/metabolismo , Inibidores de Metaloproteinases de Matriz
6.
Mol Microbiol ; 119(6): 687-694, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37140060

RESUMO

Coenzyme A (CoA) is an essential cofactor throughout biology. The first committed step in the CoA synthetic pathway is synthesis of ß-alanine from aspartate. In Escherichia coli and Salmonella enterica panD encodes the responsible enzyme, aspartate-1-decarboxylase, as a proenzyme. To become active, the E. coli and S. enterica PanD proenzymes must undergo an autocatalytic cleavage to form the pyruvyl cofactor that catalyzes decarboxylation. A problem was that the autocatalytic cleavage was too slow to support growth. A long-neglected gene (now called panZ) was belatedly found to encode the protein that increases autocatalytic cleavage of the PanD proenzyme to a physiologically relevant rate. PanZ must bind CoA or acetyl-CoA to interact with the PanD proenzyme and accelerate cleavage. The CoA/acetyl-CoA dependence has led to proposals that the PanD-PanZ CoA/acetyl-CoA interaction regulates CoA synthesis. Unfortunately, regulation of ß-alanine synthesis is very weak or absent. However, the PanD-PanZ interaction provides an explanation for the toxicity of the CoA anti-metabolite, N5-pentyl pantothenamide.


Assuntos
Ácido Aspártico , Escherichia coli , Acetilcoenzima A/metabolismo , Escherichia coli/metabolismo , Ácido Aspártico/metabolismo , beta-Alanina/metabolismo , Precursores Enzimáticos/metabolismo , Coenzima A/metabolismo
7.
Dev Comp Immunol ; 146: 104737, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37236330

RESUMO

Melanization is a component of the humoral immune defense of insects and is induced by serine protease-mediated phenoloxidase (PO) catalysis. Prophenoloxidase (PPO) in the midgut of Plutella xylostella is activated by the CLIP domain serine protease (clip-SP) in response to Bacillus thuringiensis (Bt) infection, but the detailed signaling cascade following this activation is unknown. Here, we report that activation of clip-SP enhances PO activity in the P. xylostella midgut by cleaving three downstream PPO-activating proteases (PAPs). First, the expression level of clip-SP1 was increased in the midgut after Bt8010 infection of P. xylostella. Then, purified recombinant clip-SP1 was able to activate three PAPs - PAPa, PAPb and PAP3 - which in turn enhanced their PO activity in the hemolymph. Furthermore, clip-SP1 showed a dominant effect on PO activity compared to the individual PAPs. Our results indicate that Bt infection induces the expression of clip-SP1, which is upstream of a signaling cascade, to efficiently activate PO catalysis and mediate melanization in the midgut of P. xylostella. And it provides a basis for studying the complex PPO regulatory system in the midgut during Bt infection.


Assuntos
Lepidópteros , Serina Endopeptidases , Animais , Larva , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Serina Proteases/genética , Serina Proteases/metabolismo , Precursores Enzimáticos/metabolismo , Monofenol Mono-Oxigenase , Proteínas de Insetos/metabolismo
8.
J Biomol Struct Dyn ; 41(24): 15053-15066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36905674

RESUMO

Matrix Metalloproteinases-9 (MMP-9) is one of the important targets that play a vital role in various diseases such as cancer, Alzheimer's, arthritis, etc. Traditionally, MMP-9 inhibitors have been unable to achieve selectivity to get around this target; thereby, novel mechanisms such as inhibition of activated MMP-9 zymogen (pro-MMP-9) have been discovered. The JNJ0966 was one of the few compounds that attained the requisite selectivity by inhibiting the activation of MMP-9 zymogen (pro-MMP-9). Since JNJ0966, no other small molecules have been identified. Herein, extensive in silico studies were called upon to bolster the prospect of exploring potential candidates. The key objective of this research is to identify the potential hits from the ChEMBL database via molecular docking and dynamics approach. Protein with PDB ID: 5UE4, having a unique inhibitor in an allosteric binding pocket of MMP-9, was chosen for the study. Structure-based virtual screening and MMGBSA binding affinity calculations were performed, and five potential hits were finalized. Detailed analysis of the best-scoring molecules was performed with ADMET analysis and molecular dynamics (MD) simulation. All five hits outperformed JNJ0966 in the docking assessment, ADMET analysis, and molecular dynamics simulation. Accordingly, our research findings imply that these hits can be investigated for in vitro and in vivo studies against proMMP9 and might be explored as potential anticancer drugs. The outcome of our research might contribute in expediting the exploration of drugs that inhibits proMMP-9.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Metaloproteinase 9 da Matriz , Simulação de Acoplamento Molecular , Metaloproteinase 9 da Matriz/química , Simulação de Dinâmica Molecular , Precursores Enzimáticos/metabolismo
9.
J Biol Chem ; 299(5): 104659, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36997087

RESUMO

Decarboxylation of phosphatidylserine (PS) to form phosphatidylethanolamine by PS decarboxylases (PSDs) is an essential process in most eukaryotes. Processing of a malarial PSD proenzyme into its active alpha and beta subunits is by an autoendoproteolytic mechanism regulated by anionic phospholipids, with PS serving as an activator and phosphatidylglycerol (PG), phosphatidylinositol, and phosphatidic acid acting as inhibitors. The biophysical mechanism underlying this regulation remains unknown. We used solid phase lipid binding, liposome-binding assays, and surface plasmon resonance to examine the binding specificity of a processing-deficient Plasmodium PSD (PkPSDS308A) mutant enzyme and demonstrated that the PSD proenzyme binds strongly to PS and PG but not to phosphatidylethanolamine and phosphatidylcholine. The equilibrium dissociation constants (Kd) of PkPSD with PS and PG were 80.4 nM and 66.4 nM, respectively. The interaction of PSD with PS is inhibited by calcium, suggesting that the binding mechanism involves ionic interactions. In vitro processing of WT PkPSD proenzyme was also inhibited by calcium, consistent with the conclusion that PS binding to PkPSD through ionic interactions is required for the proenzyme processing. Peptide mapping identified polybasic amino acid motifs in the proenzyme responsible for binding to PS. Altogether, the data demonstrate that malarial PSD maturation is regulated through a strong physical association between PkPSD proenzyme and anionic lipids. Inhibition of the specific interaction between the proenzyme and the lipids can provide a novel mechanism to disrupt PSD enzyme activity, which has been suggested as a target for antimicrobials, and anticancer therapies.


Assuntos
Carboxiliases , Malária , Fosfolipídeos , Plasmodium , Motivos de Aminoácidos , Cálcio/metabolismo , Cálcio/farmacologia , Carboxiliases/antagonistas & inibidores , Carboxiliases/química , Carboxiliases/metabolismo , Precursores Enzimáticos/metabolismo , Lipossomos , Ácidos Fosfatídicos/metabolismo , Ácidos Fosfatídicos/farmacologia , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/farmacologia , Fosfatidiletanolaminas/metabolismo , Fosfatidiletanolaminas/farmacologia , Fosfatidilgliceróis/metabolismo , Fosfatidilgliceróis/farmacologia , Fosfatidilinositóis/metabolismo , Fosfatidilinositóis/farmacologia , Fosfatidilserinas/metabolismo , Fosfatidilserinas/farmacologia , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Fosfolipídeos/farmacologia , Ligação Proteica , Malária/parasitologia , Proteólise/efeitos dos fármacos , Ressonância de Plasmônio de Superfície , Plasmodium/enzimologia
10.
J Biochem ; 174(1): 47-58, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36805939

RESUMO

The lipopolysaccharide (LPS)-triggered horseshoe crab coagulation cascade is composed of three protease zymogens, prochelicerase C (proC), prochelicerase B (proB) and the proclotting enzyme (proCE). In this study, we found that Ca 2+ ions increase the production of the clotting enzyme as a result of a cascade reaction reconstituted by recombinant proteins of wild-type (WT) proC, WT proB and WT proCE. We divided the cascade into three stages: autocatalytic activation of WT proC on the surface of LPS into WT α-chelicerase C (Stage 1); activation of WT proB on the surface of LPS into WT chelicerase B by WT α-chelicerase C (Stage 2) and activation of WT proce into WT CE by chelicerase B (Stage 3). Ca2+ ions enhanced the proteolytic activation in Stage 2, but not those in Stages 1 and 3. Moreover, we performed isothermal titration calorimetry to clarify the interaction of LPS or the recombinant zymogens with Ca2+ ions. LPS interacted with Ca2+ ions at an association constant of Ka = 4.7 × 104 M-1, but not with any of the recombinant zymogens. We concluded that LPS bound with Ca2+ ions facilitates the chain reaction of the cascade as a more efficient scaffold than LPS itself.


Assuntos
Caranguejos Ferradura , Lipopolissacarídeos , Animais , Lipopolissacarídeos/metabolismo , Cálcio/metabolismo , Coagulação Sanguínea , Precursores Enzimáticos/metabolismo
11.
FEBS Open Bio ; 13(6): 1095-1106, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36788723

RESUMO

Peptide asparaginyl ligases (PALs) are precision tools for peptide cyclization, cell-surface labelling, protein semisynthesis and protein conjugation. PALs are expressed as inactive proenzymes requiring low pH activation. During activation, a large portion of the cap domain of the proenzyme that covers the substrate binding site is proteolytically removed, exposing the active site to solvent and releasing a population of heterogenous active enzymes. The availability of a readily active ligase not requiring acid activation and subsequent purification of active forms would facilitate manufacturing and streamline applications. Here, we engineered the OaAEP1b-C247A hyperactive ligase via serial truncations along the linker connecting the cap and core domain of the proenzyme. The recombinant expression of the truncated constructs was carried out in Escherichia coli. Following a solubilization/refolding protocol, one truncated construct termed 'OaAEP1b-C247A-∆351' could be overexpressed in the insoluble fraction, purified, and displayed a level of ligase activity comparable to the acid-activated OaAEP1b-C247A enzyme. This constitutively active protein can be stored for up to 2 years at -80 °C and readily used for peptide cyclization and protein conjugation. We were able to express and purify a stable constitutively active asparaginyl ligase that can be stored for months without significant activity loss. The removal of the low pH proenzyme activation step eliminates the heterogeneity introduced by this procedure. The yield of purified recombinant active ligase that can be routinely obtained per 100 mL of E. coli cell culture is about 0.9 mg. This recombinant active ligase can be used to carry out protein conjugation.


Assuntos
Escherichia coli , Ligases , Escherichia coli/genética , Escherichia coli/metabolismo , Ligases/metabolismo , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Precursores Enzimáticos/metabolismo
12.
J Mol Graph Model ; 120: 108406, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36707295

RESUMO

Procathepsins, inactive precursors of cathepsins are present in the extracellular matrix (ECM) and in lysosomes. Their active forms are involved in a number of biologically relevant processes, including bone resorption, intracellular proteolysis and regulation of programmed cell death. These processes might be mediated by glycosaminoglycans (GAGs), long unbranched periodic negatively charged polysaccharides. GAGs are also present in ECM and play important role in anticoagulation, angiogenesis and tissue regeneration. GAGs not only mediate the enzymatic activity of cathepsins but can also regulate the process of procathepsin maturation, as it was shown for procathepsin B and S. In this study, we propose the molecular mechanism underlying the biological role of GAGs in procathepsin S maturation and compare our findings with computational data obtained for procathepsin B. We rigorously analyse procathepsin S-GAG complexes in terms of their dynamics, free energy and potential allosteric regulation. We conclude that the GAG binding region might have an effect on the dynamics of procathepsin S structure and so affect its maturation by two different mechanisms.


Assuntos
Precursores Enzimáticos , Glicosaminoglicanos , Glicosaminoglicanos/química , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo
13.
J Biol Chem ; 298(12): 102643, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36309092

RESUMO

Transmembrane protease serine 2 (TMPRSS2) is a membrane-bound protease expressed in many human epithelial tissues, including the airway and lung. TMPRSS2-mediated cleavage of viral spike protein is a key mechanism in severe acute respiratory syndrome coronavirus 2 activation and host cell entry. To date, the cellular mechanisms that regulate TMPRSS2 activity and cell surface expression are not fully characterized. In this study, we examined two major post-translational events, zymogen activation and N-glycosylation, in human TMPRSS2. In experiments with human embryonic kidney 293, bronchial epithelial 16HBE, and lung alveolar epithelial A549 cells, we found that TMPRSS2 was activated via intracellular autocatalysis and that this process was blocked in the presence of hepatocyte growth factor activator inhibitors 1 and 2. By glycosidase digestion and site-directed mutagenesis, we showed that human TMPRSS2 was N-glycosylated. N-glycosylation at an evolutionarily conserved site in the scavenger receptor cysteine-rich domain was required for calnexin-assisted protein folding in the endoplasmic reticulum and subsequent intracellular trafficking, zymogen activation, and cell surface expression. Moreover, we showed that TMPRSS2 cleaved severe acute respiratory syndrome coronavirus 2 spike protein intracellularly in human embryonic kidney 293 cells. These results provide new insights into the cellular mechanism in regulating TMPRSS2 biosynthesis and function. Our findings should help to understand the role of TMPRSS2 in major respiratory viral diseases.


Assuntos
COVID-19 , Serina Proteases , Humanos , Serina Proteases/metabolismo , Glicosilação , COVID-19/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Precursores Enzimáticos/metabolismo , Internalização do Vírus , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
14.
Biosci Rep ; 42(10)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36156118

RESUMO

Human kallikrein-kinin system (KKS) is a proteolytic cascade with two serine-protease zymogen couples (Factor XII and prekallikrein (PK) and their activated forms, FXIIa, PKa, respectively), releasing bradykinin by cleavage of native high-molecular-weight kininogen (nHK) into cleaved HK. For KKS investigation in human plasma, this cascade is usually triggered on ice eventually by mixing with purified proteins. It has been established that purified FXIIa, PK, and nHK required a fixed order and timing for mixing protein on ice to ensure reproducibility of testing, we investigated the activation kinetics of both enzymes. The activation process of this in vitro minimal reconstitution of KKS was studied by progress curve analysis, in condition of high enzyme/substrate ratio and by using on natural rather than peptide substrates. FXIIa and PKa were found five-times less active on ice than at 37°C: kcat = 0.133 ± 0.034 and 0.0119 ± 0.0027 s-1, KM = 672 ± 150 and 115 ± 24 nM, respectively. The progress curve analysis of our in vitro KKS reconstitutions differed from a Michaelis-Menten mathematical simulation by a faster initial rate and a slower late rate. These two features were also observed ex vivo by using dextran sulfate-activated plasma and could reinforce the hypothesis of a maximal local effect (bradykinin release) and a minimal systemic consequence (PK preservation) in KKS activation process. Analyzing the complete curve of cold KKS activation would provide valuable information for ex vivo investigation of KKS in samples from patients presenting with hereditary angioedema and other inflammatory conditions.


Assuntos
Sistema Calicreína-Cinina , Cininogênio de Alto Peso Molecular , Humanos , Cininogênio de Alto Peso Molecular/metabolismo , Pré-Calicreína/metabolismo , Fator XII/metabolismo , Bradicinina/metabolismo , Sulfato de Dextrana , Gelo , Reprodutibilidade dos Testes , Precursores Enzimáticos/metabolismo , Serina/metabolismo
15.
Protein Sci ; 31(10): e4427, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36173175

RESUMO

Bacteroides fragilis is an abundant commensal component of the healthy human colon. However, under dysbiotic conditions, enterotoxigenic B. fragilis (ETBF) may arise and elicit diarrhea, anaerobic bacteremia, inflammatory bowel disease, and colorectal cancer. Most worrisome, ETBF is resistant to many disparate antibiotics. ETBF's only recognized specific virulence factor is a zinc-dependent metallopeptidase (MP) called B. fragilis toxin (BFT) or fragilysin, which damages the intestinal mucosa and triggers disease-related signaling mechanisms. Thus, therapeutic targeting of BFT is expected to limit ETBF pathogenicity and improve the prognosis for patients. We focused on one of the naturally occurring BFT isoforms, BFT-3, and managed to repurpose several approved drugs as BFT-3 inhibitors through a combination of biophysical, biochemical, structural, and cellular techniques. In contrast to canonical MP inhibitors, which target the active site of mature enzymes, these effectors bind to a distal allosteric site in the proBFT-3 zymogen structure, which stabilizes a partially unstructured, zinc-free enzyme conformation by shifting a zinc-dependent disorder-to-order equilibrium. This yields proBTF-3 incompetent for autoactivation, thus ablating hydrolytic activity of the mature toxin. Additionally, a similar destabilizing effect is observed for the activated protease according to biophysical and biochemical data. Our strategy paves a novel way for the development of highly specific inhibitors of ETBF-mediated enteropathogenic conditions.


Assuntos
Infecções Bacterianas , Toxinas Bacterianas , Antibacterianos/metabolismo , Toxinas Bacterianas/metabolismo , Bacteroides fragilis/metabolismo , Precursores Enzimáticos/metabolismo , Humanos , Metaloendopeptidases/metabolismo , Fatores de Virulência/metabolismo
16.
ACS Chem Biol ; 17(9): 2631-2642, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36070465

RESUMO

Factor VII Activating protease (FSAP) has a protective effect in diverse disease conditions as inferred from studies in FSAP-/- mice and humans deficient in FSAP activity due to single-nucleotide polymorphism. The zymogen form of FSAP in plasma is activated by extracellular histones that are released during tissue injury or inflammation or by positively charged surfaces. However, it is not clear whether this activation mechanism is specific and amenable to manipulation. Using a phage display approach, we have identified a Cys-constrained 11 amino acid peptide, NNKC9/41, that activates pro-FSAP in plasma. The synthetic linear peptide has a propensity to cyclize through the terminal Cys groups, of which the antiparallel cyclic dimer, but not the monocyclic peptide, is the active component. Other commonly found zymogens in the plasma, related to the hemostasis system, were not activated. Binding studies with FSAP domain deletion mutants indicate that the N-terminus of FSAP is the key interaction site of this peptide. In a monoclonal antibody screen, we identified MA-FSAP-38C7 that prevented the activation of pro-FSAP by the peptide. This antibody bound to the LESLDP sequence (amino acids 30-35) in an intrinsically disordered stretch in the N-terminus of FSAP. The plasma clotting time was shortened by NNKC9/41, and this was reversed by MA-FSAP-38C7, demonstrating the utility of this peptide. Peptide NNKC9/41 will be useful as a tool to delineate the molecular mechanism of activation of pro-FSAP, elucidate its biological role, and provide a starting point for the pharmacological manipulation of FSAP activity.


Assuntos
Bacteriófagos , Fator VII , Animais , Humanos , Camundongos , Aminoácidos , Anticorpos Monoclonais/metabolismo , Bacteriófagos/metabolismo , Precursores Enzimáticos/metabolismo , Fator VII/metabolismo , Histonas , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Serina Endopeptidases/metabolismo
17.
Plant Cell ; 34(12): 4936-4949, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36099055

RESUMO

Peptide ligases are versatile enzymes that can be utilized for precise protein conjugation for bioengineering applications. Hyperactive peptide asparaginyl ligases (PALs), such as butelase-1, belong to a small class of enzymes from cyclotide-producing plants that can perform site-specific, rapid ligation reactions after a target peptide asparagine/aspartic acid (Asx) residue binds to the active site of the ligase. How PALs specifically recognize their polypeptide substrates has remained elusive, especially at the prime binding side of the enzyme. Here we report crystal structures that capture VyPAL2, a catalytically efficient PAL from Viola yedoensis, in an activated state, with and without a bound substrate. The bound structure shows one ligase with the N-terminal polypeptide tail from another ligase molecule trapped at its active site, revealing how Asx inserts in the enzyme's S1 pocket and why a hydrophobic residue is required at the P2' position. Besides illustrating the anchoring role played by P1 and P2' residues, these results uncover a role for the Gatekeeper residue at the surface of the S2 pocket in shifting the nonprime portion of the substrate and, as a result, the activity toward ligation or hydrolysis. These results suggest a picture for proenzyme maturation in the vacuole and will inform the rational design of peptide ligases with tailored specificities.


Assuntos
Precursores Enzimáticos , Ligases , Precursores Enzimáticos/metabolismo , Especificidade por Substrato , Ligases/genética , Ligases/metabolismo , Peptídeos/metabolismo , Proteínas
18.
Insect Biochem Mol Biol ; 148: 103819, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35963292

RESUMO

A prostate trypsin-like serine endopeptidase called initiatorin (BmIni) is an essential factor in triggering the sperm maturation response of the silkworm, Bombyx mori. BmIni has been predicted to specifically cleave the carboxyl side of two consecutive arginine residues present in certain seminal plasma and sperm proteins, but the actual substrates are still unknown. In an attempt to elucidate the molecular mechanism underlying the sperm maturation signaling pathway, in this study, we examined whether BmIni activates the seminal carboxypeptidase B (BmCPB) protein through specific degradation. First, we confirmed in vitro that the inactive BmCPB present in unmated male vesicula (v.) seminalis is activated by treatment with BmIni or trypsin. Molecular cloning of the gene encoding the seminal BmCPB protein has shown that BmCPB is produced as a secreted proenzyme and may be activated after a trypsin-like protease cleaves the boundary between the prodomain and the enzyme site. In support of these findings, both trypsin and BmIni significantly activated recombinant Pro-BmCPB, which was successfully expressed and purified as a proenzyme in Escherichia coli; moreover, two specific cleavage forms appeared in the activation by BmIni that did not appear in that by trypsin. Therefore, a recombinant protein with a mutated diarginine motif (Arg109-Arg110), which is presumed to be a pre-cleavage site of BmCPB based on its high homology with bovine CPB, was prepared and treated with BmIni. As a result, the two specific degraded peptides were no longer observed, and simultaneously the activation was suppressed. Taken together, these findings lead to the conclusion that zymogen BmCPB, which is synthesized and secreted in male reproductive organs, is activated by sequence-dependent proteolysis by BmIni during ejaculation and in the female reproductive organs, providing a clue to the mechanism underlying seminal plasma and/or sperm protein degradation by BmIni in the sperm maturation cascade of B. mori.


Assuntos
Bombyx , Animais , Bombyx/metabolismo , Carboxipeptidase B/metabolismo , Bovinos , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Escherichia coli , Feminino , Masculino , Próstata/metabolismo , Proteólise , Sêmen , Serina Endopeptidases , Espermatozoides/metabolismo , Tripsina/metabolismo
19.
Nat Commun ; 13(1): 4861, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982075

RESUMO

We present three classes of chemical zymogens established around the protein cysteinome. In each case, the cysteine thiol group was converted into a mixed disulfide: with a small molecule, a non-degradable polymer, or with a fast-depolymerizing fuse polymer (ZLA). The latter was a polydisulfide based on naturally occurring molecule, lipoic acid. Zymogen designs were applied to cysteine proteases and a kinase. In each case, enzymatic activity was successfully masked in full and reactivated by small molecule reducing agents. However, only ZLA could be reactivated by protein activators, demonstrating that the macromolecular fuse escapes the steric bulk created by the protein globule, collects activation signal in solution, and relays it to the active site of the enzyme. This afforded first-in-class chemical zymogens that are activated via protein-protein interactions. We also document zymogen exchange reactions whereby the polydisulfide is transferred between the interacting proteins via the "chain transfer" bioconjugation mechanism.


Assuntos
Cisteína , Precursores Enzimáticos , Cisteína/química , Dissulfetos/química , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Polímeros
20.
Insect Biochem Mol Biol ; 148: 103818, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36007679

RESUMO

Serine protease cascades have evolved in vertebrates and invertebrates to mediate rapid defense responses. Previous biochemical studies showed that in hemolymph of a caterpillar, Manduca sexta, recognition of fungi by ß-1,3-glucan recognition proteins (ßGRP1 and ßGRP2) or recognition of bacteria by peptidoglycan recognition protein-1 (PGRP1) and microbe binding protein (MBP) results in autoactivation of hemolymph protease-14 precursor (proHP14). HP14 then activates downstream members of a protease cascade leading to the melanization immune response. ProHP14 has a complex domain architecture, with five low-density lipoprotein receptor class A repeats at its amino terminus, followed by a Sushi domain, a Sushi domain variant called Wonton, and a carboxyl-terminal serine protease catalytic domain. Its zymogen form is activated by specific proteolytic cleavage at the amino-terminal end of the protease domain. While a molecular mechanism for recognition and triggering the response to ß-1,3-glucan has been delineated, it is unclear how bacterial recognition stimulates proHP14 activation. To fill this knowledge gap, we expressed the two domains of M. sexta MBP and found that the amino-terminal domain binds to diaminopimelic acid-peptidoglycan (DAP-PG). ProHP14 bound to both the carboxyl-terminal domain (MBP-C) and amino-terminal domain (MBP-N) of MBP. In the mixture of DAP-PG, MBP, and larval plasma, inclusion of an HP14 fragment composed of LDLa repeats 2-5 (LDLa2-5) or MBP-C significantly reduced prophenoloxidase activation, likely by competing with the interactions of the full-length proteins, and suggesting that molecular interactions involving these regions of proHP14 and MBP take part in proHP14 activation in response to peptidoglycan. Using a series of N-terminally truncated versions of proHP14, we found that autoactivation required LDLa2-5. The optimal ratio of PGRP1, MBP, and proHP14 is close to 3:2:1. In summary, proHP14 autoactivation by DAP-type peptidoglycan requires binding of DAP-PG by PGRP1 and the MBP N-terminal domain and association of the LDLa2-5 region of proHP14 with the MBP C-terminal domain. These interactions may concentrate the proHP14 zymogen at the bacterial cell wall surface and promote autoactivation.


Assuntos
Manduca , Animais , Bactérias , Proteínas de Transporte/metabolismo , Precursores Enzimáticos/metabolismo , Hemolinfa/metabolismo , Proteínas de Insetos/metabolismo , Larva/metabolismo , Manduca/metabolismo , Peptidoglicano/química , Serina Endopeptidases , Serina Proteases/genética , Serina Proteases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...